Runp

runp contributors

Version 0.7.1

Overview

Like docker-compose but not just for containers.

Today, every non-trivial software project is compound of a number of parts (applications, libraries,
services) running together in a lot of environments: virtual machines, Docker containers, physical
boxes, cloud...

Runp allows you to specify what and how you want to run and helps you to start the system as a
whole, running all needed processes in parallel (like Docker compose, Foreman et simili).

This speeds up the setup of a working environment compared to the usual approaches like custom
scripts, documentation (written or spoken), or, more commonly, leaving it to the developer to figure
out.

Runp uses a Runpfile, a sort of a sofisticated Procfile that describes the project as a system
composed of units each of which can run a different type of process such as:

*» processes on the physical box
* container processes

* SSH tunnel processes
Moreover the Runpfile handles:

» working directory per process
* environment variables per process

» user defined vars per system, defined in the Runpfile or passed at runtime as command line
arguments

* processes dependency: a process can wait for a given condition to start, e.g. a file appearing or
another process being ready

* not only long running processes but one shot commands too

¢« Windows OS

An example of a Runpfile:

name: Example
description: |
Sample Runpfile to show runp functionalities
units:
web:
description: Web app
this process is running on host machine
host:
command: node app.js
workdir: backend
env:
inherit PATH from host system to find needed tools (e.g. node)

PATH: $PATH
await:
wait for the DB being available
resource: tcp4://localhost:5432/
timeout: 0hOm10s
mail:
description: Test mail server
this process is running in a container
container:
image: docker.io/mailhog/mailhog
ports:
- "8025:8025"
- "1025:1025"
db:
description: Corporate DB
This process is reachable through SSH port forwarding
ssh_tunnel:

user: user
auth:
identity_file: ~/.ssh/id_rsa
local:
port: 5432
jump:
host: dev.host
port: 22
target:

host: corporate.db
port: 5432

Usage

Run runp

Some commands:

runp --help # generic help

runp help up # describes the command "up"

runp up # run the runpfile in the current directory

runp -d up -f /path/to/runpfile.yaml # run in debug mode processes in the given
Runpfile

runp encrypt --key test secret # encrypt "secret" using the key "test" and print

=

out the value to use in a Runpfile
runp 1s -f /path/to/runpfile.yaml # list units in Runpfile

Settings
Runp looks for a settings file in ~/.runp/settings.yaml.

If the file does not exist or is empty/invalid, Runp starts using these defaults:

container_runner: docker

Preconditions
Any unit is ran if all its preconditions are satisfied.
Available preconditions:

* OS: unit is ran if OS is the specified one.
* Runp version: unit is ran if Runp version is in range.

* Hosts: unit is ran if /etc/hosts contains the given mapping.
Runpfile composition

Runpfile can include other Runpfiles:

name: Test Runpfile
description: This is Runpfile
include:

- Runpfile-env.yml

- Runpfile-vars.yml

App waiting for DB

A backend app running on host waiting for a DB running in a container to be available:

units:
be:
description: Backend app
host:
command: mvn clean compile quarkus:dev
workdir: backend
env:
inherit PATH from host system to find mvn and java
PATH: $PATH
await:
resource: tcp4://localhost:5432/
timeout: 0hOm10s
db:
description: Database
container:
image: docker.io/postgres:alpine
ports:
- "5432:5432"
env:
POSTGRES_PASSWORD: pass
POSTGRES_USER: user
POSTGRES _DB: dbname

Containers
You can set the container engine using the settings file (key: container_runner).

Example:

container_runner: /path/to/podman

Only Docker and Podman (as they use the same command line flags) are
WARNING
supported.

Containers can talk to each other thorough a Docker network (runp-network).

The container name (the host name exposed to other containers) is set to runp-${UNIT NAME} or to
the field name.

This Runpfile starts Wordpress and MySql:

name: Wordpress Runpfile
description: Runpfile to run Wordpress and MySql
units:
db:
container:
name: db
image: docker.io/mysql:5.7

ports:
- "3306:3306"

env:
MYSQL_ROOT_PASSWORD: somewordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

wordpress:
container:

image: docker.io/wordpress:latest

ports:
- "8000:80"

env:
WORDPRESS_DB_HOST: db:3306
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress
WORDPRESS_DB_NAME: wordpress

await:
resource: tcp4://localhost:3306/
timeout: 0hOm20s

Use containers volumes

Run containers and volumes (example is from the book Docker in action - Manning):

name: Containers Runpfile
description: This is Runpfile showing Docker volumes
units:
fowler:
description: The Fowler collection
container:
image: docker.io/alpine:3.12
skip_rm: true
mounts:
- "type=volume,dst=/1ibrary/PoEAA"
- "type=bind,src=/tmp,dst=/1ibrary/DSL"
command: |
echo "Fowler collection created"
knuth:
description: The Knuth collection
container:
image: docker.io/alpine:3.12
skip_rm: true
mounts:
- "type=volume,dst=/1ibrary/TAoCP.vol1"
- "type=volume,dst=/1ibrary/TAoCP.vo12"
- "type=volume,dst=/1ibrary/TAoCP.vol3"
command: |
echo "Knuth collection created"
reader:

description: The avid reader
container:
image: alpine:3.12
volumes_from:
- fowler
- knuth
command: |
1s -1 /library/
await:
timeout: @hOm3s

On Windows

Windows is supported:

name: Test Runpfile
description: This is Runpfile

units:
await:
description: read environment variables
host:
command: set
env:
in env block variables have always the unix notation
MYHOME: ${HOME}
echo:
description: echo the value of %0S% env var
host:

when used in command, env vars have the specific 0S notation
command: echo %0S%
infiniteloop:

description: infinite loop

host:
this script is in examples/ directory
executable: infinite.cmd
workdir: examples

Some programs, especially on Windows, implicitly use OS specific environment variables.

If you run into strange problems try adding these to the env block:

Windows env vars

SystemRoot: ${SystemRoot}
ALLUSERSPROFILE: ${ALLUSERSPROFILE}
APPDATA: ${APPDATA}

CommonProgramFiles: ${CommonProgramFiles}
CommonProgramW6432: ${CommonProgramW6432}
ComSpec: ${ComSpec}

DriverData: ${DriverData}

HOMEDRIVE: ${HOMEDRIVE}
HOMEPATH: ${HOMEPATH}
LOCALAPPDATA: ${LOCALAPPDATA}
0S: ${0S}

PATHEXT: ${PATHEXT}
ProgramData: ${ProgramData}
ProgramFiles: ${ProgramFiles}
ProgramW6432: ${ProgramW6432}
PSModulePath: ${PSModulePath}
PUBLIC: ${PUBLIC}
SESSTONNAME: ${SESSIONNAME}
SystemDrive: ${SystemDrive}
TEMP: ${TEMP}

TMP: ${TMP}

USERNAME: ${USERNAME}
USERPROFILE: ${USERPROFILE}
windir: ${windir}

Run a different command on different operative systems

Inclusions are compared to runtime.G00S:

units:
win:
description: Windows unit
preconditions:
0S:
this unit is ran when os is windows
inclusions:
- windows
host:
command: dir {{vars runp_root}}
unix:
description: Nix unit
preconditions:
0S:
this unit will be ran when os is linux or darwin
inclusions:
- linux
- darwin
host:
command: 1s -al {{vars runp_root}}

SSH tunnel to reach a remote LDAP
A backend app running on host using LDAP on remote server available using SSH tunneling.
SSH tunnel can use three auth methods:

* identity_file: the path to the private key, ie ~/.ssh/id_rsa

* secret: the SSH server password in plain text

» encrypted_secret: the SSH server password encrypted and in base 64 (you can create it using
runp encrypt)

units:
be:
description: Backend app
host:
command: mybackendapp
workdir: backend
ldap:
description: LDAP
ssh_tunnel:
user: runp
auth:
#identity_file: ~/tmp/runpssh/ssh/runp
fisecret: "plain text secret"
encrypted_secret: "NsM1hcAy/L2TfACgfzbhYyb9j5a2ySYcARFDKkv7HTk="

local:
localhost is the default
port: 389
jump:
host: sshserver
port: 22
target:
host: ldapserver
port: 389

Use secrets
SSH tunnel process allows user to use secrets to specify the password.

To create the encrypted secret:

runp encrypt -k thekey SECRET

The above command will encrypt the string SECRET using the password thekey.

To run a Runpfile containing an encrypted_secret you have to pass the key to the up command (the
key must coincide with the one used to encrypt).

You can pass the key on command line using the options --key or --key-env

Using the -k/--key argument the key is in plain text on the command line:

runp up -k thekey

Use the --key-env argument Runp looks up for that environment variable and use its value as key:

runp up --key-env RUNP_SECRET

Use environment variables

A one-shot command using custom environment variables:

env3:
description: echo command
host:
command: echo ${MYHOME}
workdir: ..
env:

MYHOME: ${HOME}

User defined variables

Use runtime vars:

vars:
foo: FOO_DEFAULT_VALUE
units:
vars-test-unit:
description: echo a user defined var
host:
command: echo _ {{vars foo}} _

The var foo will have value FOO_DEFAULT_VALUE or can be set from command line:

$ bin/runp --debug up -f examples/Runpfile-vars.yml --var foo=bar

Implicit variables
Runp adds to the context some variables:

* runp_workdir: user current working directory as absolute path
* runp_root: directory parent of the Runpfile as absolute path

» runp_file_separator: OS file separator (/ on unix, \ on windows)
Usage:
units:

vars:
description: echo implicit vars from Runp

host:
command: "echo runp_workdir={{vars runp_workdir}} runp_root={{vars runp_root}}"

Disabling color output

To have plain, non-colored text output set the environment variable NO_COLOR:

NO_COLOR=1 ./bin/runp -d up -f examples/Runpfile-many-units.yml

or use the option --no-color:

./bin/runp -d --no-color up -f examples/Runpfile-many-units.yml

Runpfile Runp version
A unit can require a constraint on the Runp version.

This unit requires runp version greater the 0.5.0:

units:
test1:
description: test unit
preconditions:
runp:
operator: GreaterThan
version: 0.5.0
host:
command: env
workdir: ${HOME}

The available operators are:

* LessThan

* LessThanOrEqual

* Equal

* GreaterThanOrEqual

e GreaterThan

10

License

Apache License 2.0 - Copyright © 2020-TODAY runp contributors.

11

http://www.apache.org/licenses/LICENSE-2.0

	Runp
	Overview
	Usage
	License

